

Atelier de formation sur l'Open Data au profit des organismes et institutions publics relevant de la Région Fès-Meknès

Session de formation sur l'Open Data

Séance 3:

Standards et plateformes techniques

11h40-12h30

Plateformes et standards techniques

Section 3.1:

Plateformes techniques Open Data

Recommendations

- Disposer des moyens techniques et humains pour mettre en place et maintenir une plateforme de publication de données
- ☐ Utiliser une plateforme à l'échelle nationale
- Potentiellement interfacer la plateforme nationale aux différentes plateformes régionales
- Utiliser une solution open source
- Possibilité de création de catalogues, ensembles de données, et métadonnées associées
- ☐ La plateforme doit permettre la participation et l'interaction avec les utilisateurs et/ou visiteurs :
 - Demandes d'ajout de nouvelles données
 - Pouvoir signaler un jeu de données
 - Les commentaires, les discussions
 - Les cas de réutilisation de données
 - Les suggestions d'amélioration

Les accès

les APIs sont un levier essentiel pour maximiser l'utilisation et l'impact des données ouvertes

Accès simple et automatisé

Permet aux utilisateurs d'accéder facilement et automatiquement aux données, sans nécessiter de téléchargement manuel

Interopérabilité

Elles facilitent l'intégration des données ouvertes avec d'autres systèmes, applications ou plateformes

Mise à jour en temps réel

Les utilisateurs peuvent accéder aux données les plus récentes, sans attendre des publications manuelles

Encouragement à l'innovation

Permet aux développeurs de créer des applications, des visualisations ou des services innovants en exploitant les données ouvertes

Comparatif des plateformes de publication

Plateforme

Description

Caractéristiques clés

Cas d'usage

CKAN

- Le portail de données open source le plus célèbre est CKAN.
 Développé à l'origine par l'Open Knowledge Foundation et est utilisé par les gouvernements américain, britannique et espagnol, entre autres
- Solution mature
- Nombreux modules et extensions
- API puissante
- Grande communauté de développeurs

Catalogues nationaux et projets à grande échelle

DKAN

- Basée sur Drupal (un système de gestion de contenu écrit en PHP)
- Axée sur la personnalisation et la visualisation

- User friendly
- Visualisations intéressantes disponibles
- Intégration native avec Drupal

Petites et moyennes administrations locales

Comparatif des plateformes de publication (suite)

Plateforme

Description

Caractéristiques clés

Cas d'usage

uData

- Développée par Etalab, spécialisée pour les besoins des gouvernements
- Développée en python
- Peut être installée sur un serveur linux ou MacOS

- Conçue pour les données publiques
- Interface moderne

Portails gouvernementaux nationaux ou locaux

GeoNode

 Spécialisée pour la gestion de données géospatiales

- Gestion avancée de données SIG
- Cartographie et analyse géographique intégrées
- Peut être intégrée dans une autre plateforme existante

Projets nécessitant une gestion de données géospatiales (urbanisme, environnement)

Différences clés

 CKAN : Meilleur choix pour un catalogue généraliste robuste avec une grande communauté de maintenance

DKAN : Idéal pour les projets nécessitant une interface conviviale et la personnalisation avec
 Drupa. Cela peut également avoir ses avantages lorsque Drupal est également utilisé pour le site
 Web du gouvernement local ou régional

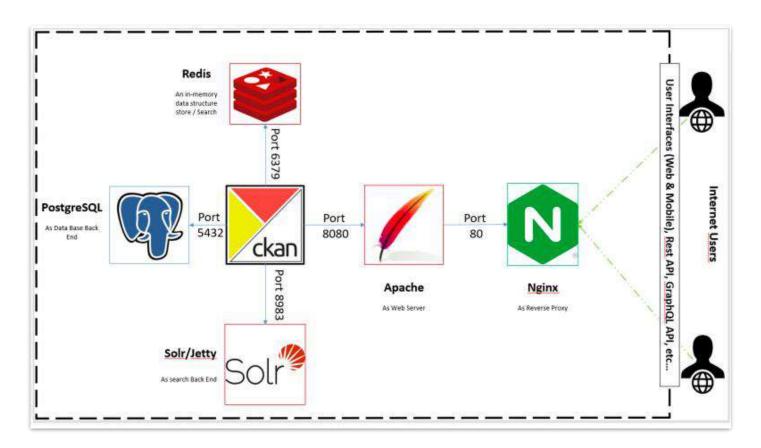
• uData : Axé sur les gouvernements, bon choix pour les initiatives de données publiques nationales

• **GeoNode** : Incontournable pour les projets SIG nécessitant des outils cartographiques avancés.

Architecture CKAN

Trois types d'installation

- Installation de CKAN à partir du package
- Installation de CKAN à partir des sources
- Installation de CKAN avec Docker Compose


Pour un portail au niveau d'une ville avec peu de trafic :

- 2 * Serveurs avec 2 Go de RAM (Web et DB/solr)
- Disque dur de 80 Go sur les deux.
- Processeurs double cœur

Pour un grand portail national à fort trafic :

- 2 * serveurs avec 8 Go de RAM (un pour le Web et un pour la base de données/solr)
- Disque dur de 160 Go sur les deux.
- Processeurs quad core (plus rapide)

Architecture CKAN

Dépendances CKAN (from package)

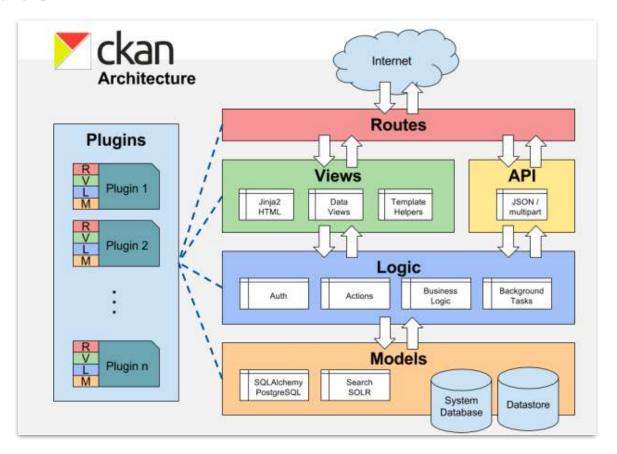
Service	Port	Used for
NGINX	80	Proxy
uWSGI	8080	Web Server
uWSGI	8800	DataPusher
Solr/Jetty	8983	Search
PostgreSQL	5432	Database
Redis	6379	Search

Dépendances CKAN (from package)

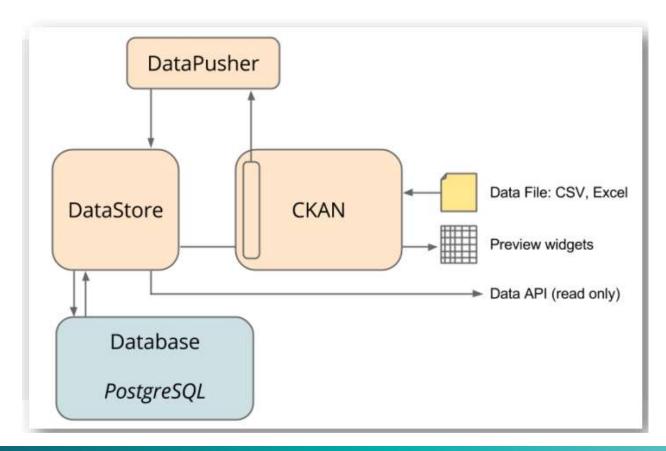
Package	Description	
Python	The Python programming language, v3.6 or newer (or v2.7)	
PostgreSQL	The PostgreSQL database system, v9.5 or newer	
libpq	The C programmer's interface to PostgreSQL	
pip	A tool for installing and managing Python packages	
python3-venv	The Python3 virtual environment builder (or for Python 2 use 'virtualenv' instead)	
Git	A distributed version control system	
Apache Solr	A search platform	
Jetty	An HTTP server (used for Solr).	
OpenJDK JDK	The Java Development Kit (used by Jetty)	
Redis	An in-memory data structure store	

Dépendances CKAN (from package)

Test system	Prod (minimal config)	Prod (recommended config)	
CPU	1 CPU / core	4 CPU / core	4-8 CPU / core
RAM	4 GB	4 GB	8 GB
Hard disk	20 GB	20 GB	20-40 GB


Configuration par VM

•1 CPU with 4 cores


•RAM: 4GB

•Disk space: 20GB

Architecture CKAN

Architecture CKAN

Extensions CKAN

DataStore + Data Pusher / xloader

L'extension CKAN DataStore fournit une base de données ad hoc pour le stockage de données structurées à partir de distributions d'un jeu de données CKAN.

Les données peuvent être extraites des fichiers et stockées dans le DataStore.

Lorsqu'une distribution est ajoutée au DataStore, on obtient :

- Aperçu automatique des données sur la page de la distribution, à l'aide de l'extension Data Explorer
- API Data : permettant de chercher, filtrer et mettre à jour les données, sans télécharger et uploader l'intégralité du fichier de données

Le DataStore est intégré à l'API CKAN et au système d'autorisation.

Le DataStore est généralement utilisé avec le DataPusher, qui télécharge automatiquement les données vers le DataStore à partir de fichiers appropriés, qu'ils soient téléchargés via le FileStore de CKAN ou via des liens

Architecture CKAN

https://github.com/open-data/ckanext-scheming

Scheming est une extension permettant de personnaliser des schémas des jeux de données, des groupes et d'organisation dans CKAN.

L'extension des schémas se fait à l'aide de fichiers JSON ou YAML qui incluent des règles de validation, la modification d'extraits de modèle de formulaire et des extraits d'affichage.

Extensions CKAN

https://github.com/open-data/ckanext-fluent

Fluent est une extension permettant d'ajouter du texte et des balises multilingues aux jeux de données, aux groupes et organisations de CKAN.

Fluent fonctionne avec Scheming en fournissant des validateurs et des extraits de code pouvant être utilisés dans les schémas personnalisés.

Fluent affiche des zones d'édition pour toutes les langues pour chaque champ dans le formulaire d'édition, mais par défaut n'affiche que la valeur de la langue de l'utilisateur lors de l'affichage d'un jeu de données.

Toutes les valeurs multilingues sont renvoyées et créées/mises à jour via l'API à l'aide d'un objet JSON.

Par exemple : un champ Fluent "label" peut avoir la valeur : ... "label": { "ar": "كتب", "fr": "Livres"}, ...

Extensions CKAN

Les autres extensions

webpage_view / pdf_view / officedocs_view / basic-charts

Spatial_metadata / spatial_query navigablemap / geojson_view

Harvest / dcat

Pages / googleanalytics / showcase / datarequests / disqus / rating / contact

Publication sur la plateforme

Trois scénarios possibles pour la publication d'un jeu de données

SCÉNARIO 1

Généralement, dans le cas de :

- •Faible nombre de jeux de données avec une faible fréquence de mise à jour,
- •Si le producteur des données ne dispose pas de systèmes d'information
- •Si l'environnement ne favorise pas l'extraction et la mise à jour automatique

Les envoyer à l'ADD par mail pour que l'ADD les publie sur l'espace du producteur concerné

Publication sur la plateforme

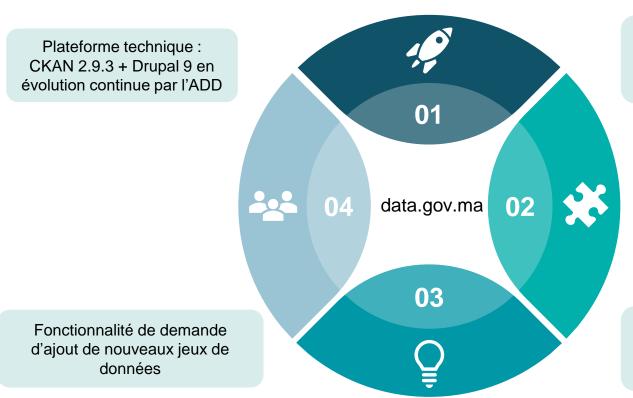
Trois scénarios possibles pour la publication d'un jeu de données

SCÉNARIO 2

•Plus de 10 jeux de données avec une fréquence de mise à jour régulière

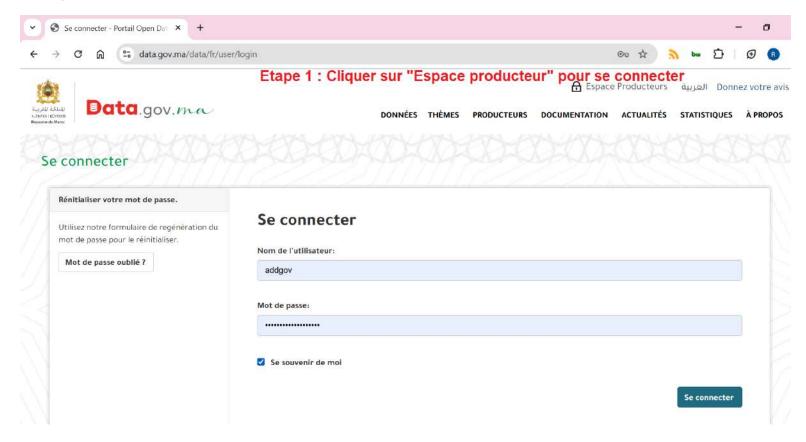
Le producteur peut obtenir son propre compte publie directement ses jeux de données sur son espace en utilisant le login et le mot de passe que l'ADD lui communique.

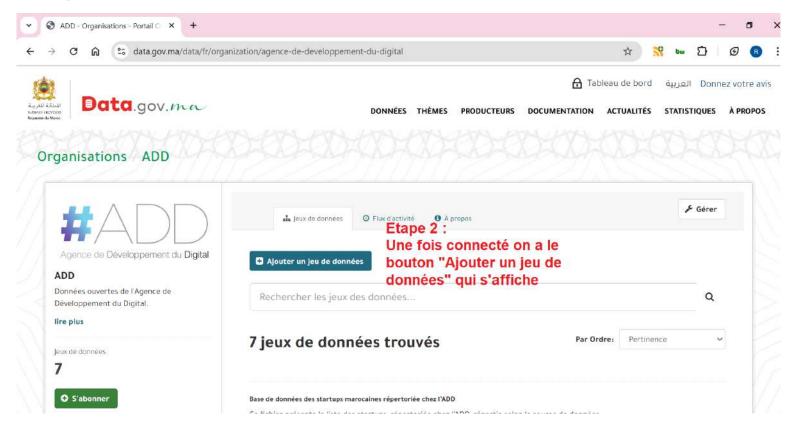
Publication sur la plateforme


Trois scénarios possibles pour la publication d'un jeu de données

SCÉNARIO 3

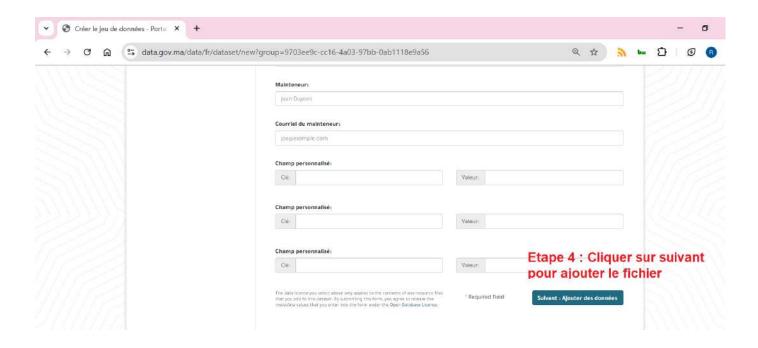
Dans le cas où le nombre de jeux de données est important avec une actualisation fréquente, et une maturité du système d'information et des mécanismes d'automatisation

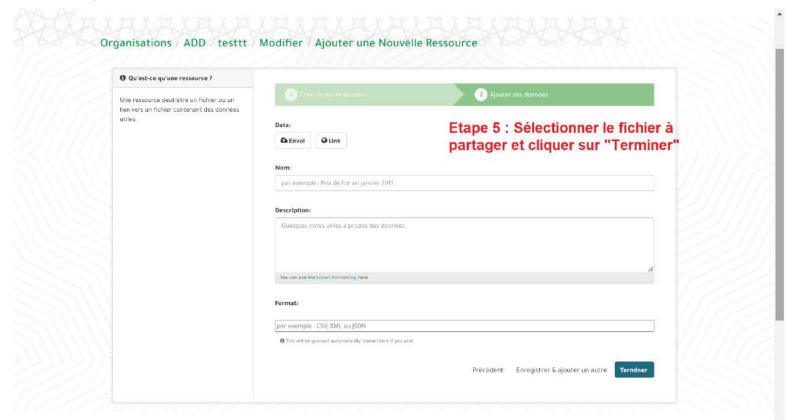

Activer les APIs entre le SI du producteur et le portail Open Data pour permettre la mise à jour automatique des jeux de données

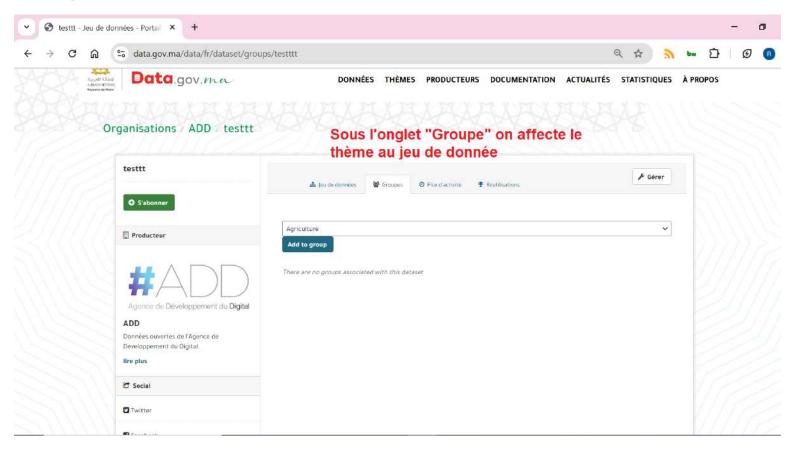

Cas du Royaume du Maroc

Mises à jour des données en automatique qui se base sur l'exploitation des APIs (d'écriture)

Mises à jour des données en manuel avec insertion des données directement






Cas du Royaume du Maroc

Mots-clés: par ex. économie, santé mentále, gouvernement Etape 3: Renseigner les mots clés (tags). Licence: La licence et le nom de O Coanse definitions and additional information can be reuniture promining tion and Open Data Commons Open Database License (ODbL) l'organisme (producteur) sont sélectionnés par défaut. Producteurs La visibilité permet de ADD publier le jeu de donnée sur le portail ou de le garder en Visibilité: mode privé Prive Source: Version: Producteur: Jean Dupont Courriel de l'auteur: Mainteneur: Courriel du mainteneur:

Outils d'analyse de données

Outil

Description

Caractéristiques clés

Pandas (Python)

- Nettoyage des données
- Analyse des données tabulaires
- Création de modèles et simulations

- Très populaire dans l'écosystème machine learning et big data
- Supporte une vaste gamme de graphiques, y compris les graphiques interactifs

- Statistiques et visualisation avancées
- Création de modèles et simulations

- Facilité d'utilisation
- Peut gérer de grands volumes de données
- Fortement adopté par les statisticiens et chercheurs en analyse de données

QGIS

 Analyse géospatiale pour les données SIG Supporte de nombreux formats de fichiers et bases de données spatiales (Shapefile, GeoJSON, PostGIS, etc.) Plateformes et standards techniques

Section 3.2:

Standards techniques et méthodes d'anonymisation

Standards techniques: un pilier essentiel

Les standards techniques jouent un rôle clé pour garantir que les données ouvertes soient exploitables, fiables et réutilisables par tous les utilisateurs. Voici les raisons majeures qui justifient leur importance :

Interopérabilité

Permet à différents systèmes, plateformes et applications d'échanger et de traiter des données sans obstacles techniques.

Réutilisabilité

Les données conformes aux standards peuvent être manipulées et analysées à l'aide d'outils standardisés.

Les standards garantissent une présentation claire et une structuration fiable des données, augmentant leur crédibilité.

Efficacité

Évite de réinventer des processus pour chaque publication, ce qui diminue les coûts et efforts techniques.

Innovation et Développement de Nouveaux Services

Les standards techniques stimulent la créativité en facilitant la conception de nouvelles applications et services innovants.

Prévisibilité et Planification

Qualité et Transparence

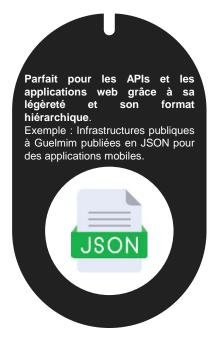
Les données conformes aux standards permettent une analyse fiable des tendances pour la prise de décision stratégique.

Un guide des standards Open Data élaboré par l'ADD est fourni ici: Lien vers le guide

Critère 1: Formats de fichiers

Pour permettre au plus grand nombre d'utiliser un fichier de données, il est nécessaire que ce fichier soit dans un format documenté et public, aussi appelé « format ouvert », manipulable par des outils standard et ne nécessitant pas l'acquisition de logiciels spécifiques.

Pour les données tabulaires Pour les images Pour les images vectorielles Pour les API



Formats de fichiers courants

Simple, lisible par des humains et des machines, adapté aux grandes bases de données. Exemple:Données démographiques sur la population

de Fès (source : portail national des données ouvertes).

JSON (JavaScript **Object Notation)**

GeoJSON

XML (Extensible Markup Language

CSV (Comma-₃₆ Separated Values)

Critère 2: Données tabulaires

Les données tabulaires doivent être exploitables informatiquement et une structure de données compatible avec les besoins de calcul et d'archivage (données longues vs. données larges)

Exploitable informatiquement:

- Permettre le traitement directe de la donnée, en opérant des filtres de lignes/colonnes, agrégats, ... Il est essentiel que les cellules ne soient pas fusionnées (cas de l'excel)
- Uniformitá dos formats da dannása

911 Seek [2017]	Cetty	E into	B 1111	E 1947	G inii	1110	C cont	C item	C INI	6 HI	G 100	O 1911	
100	ATGRIFFITATE												
Ni.	Aberts	0.045	0.626	0,638	0.613	0.623	8.602	(0.64)	3,640.	6.632	0.862	2,662	
10	Algeria	0.377	2002	0.067	8.293	6,000	3.400	Custo	3,617	6,627	0.630	2,644	
85	Anderes											8.756	
147	Argon										0.376	9.387	
81	Artigue and Bartayda												
47	Argentina	0.204	B.TEE	6.72E	8,725	6.726	8.792	0.788	0.746	6.257	0.794	6331	
11	Armona	0.051	0.655	0.386	1.333	0.555	1.600	0.012	3,623	9,636	0.642	2,647	- 3
1	Australie	0.806	0.267	830.0	8.872	0.875	0.443	(1.886	1.101	4.892	0.895	9.858	
10.	Audria	0.295	0.000	0.000	1.657	0.011	3.617	0.020	9.836	4.405	(0,694)	9.696	-
61	Albitosas						0.452	\$100.0	36417		5481	3 640	_
54	Bananus									1	Lucio	9,736	9
45	Berain	0.790	0.732	0.757	8.700	0.703	8.773	0.770	9.779		0.780	9.752	
290.	Binglickeli	0.881	5.394	0.402	5.439	0.413	845	11,488	0.442	W 4	(2.49)	2.468	
55	Barbachi	11.716	8.718	6.216	8.721	0.727	8.00	6,785	3.90	100	0.745	8.752	_
15	Materials.						9.857	10.880	£867	25	12.676	9.481	- 4
17	Begun	0.00	0.000	6,025	5.839	60045	3.652	0.957	0.862	5.364	0.890	9.873	

Structure tabulaire adaptée

 Privilégier les structures par insertion de lignes (vertical) plutôt que l'ajout de colonnes (horizontal)

Country Name	Country Code	Indicator Name Indicator Code	1960	1961	1962	1953	1964	1965
Artiba	ABW	Urban population SP.URB.TOTI.	27526	28141	28532	28761	28524	29062
Afghanistan	AFG	Urban population SP.URB.TOTL	735836	796272	389385	885228	934235	985074
Angola	AGO	Urban populatior SP.URB.TOTL	109222	597288	528381	660180	691532	721552
Albama	ALB	Urban populatior SP.URB.TOTL	493982	513592	530766	547928	565248	582374
Andorra	AND	Urban populatior SP.URB.TOTL	7839	8766	9754	10811	11915	13067
Arab World	ARB	Urban populatioi SP.URB.TGTL	28797177	30292822	31856717	33513046	3527533	53923
United Arab Emirates	ARE	Urban population SP.URB.TOTL	67927	74975	84367	95215	1061	5173
Argentina	ARG	Urban population SP.URB.TOTL	15076842	15445950	15815562	16183085	16552517	23103
Armenia	ARM	Urban population SP.URB.TOTI.	960956	1012430	1065431	1119586	1174560	1229980
American Samoa	ASM	Urban populatior SP.URB.TOTL	13324	13729	14254	14871	15522	19176
Antigue and Berbuda	ATG	Urban population SP.URB. FOTL	21406	214/2	21458	21448	21449	21489

Critère 3: Encodage des données

Parmi une multitude d'encodages possibles (ASCII, UTF), l'encodage défini au niveau international est UTF-8

Endocage ASCII / Latin-1 (ISO8895)

- •128 caractères dédiés à l'anglais ou spécifique au langues latines
- •Source de problèmes d'incompatibilité des langues

Où sont les caractÃ"res accentués?

Endocage UTF-8

•2 millions d'entrées

Où sont les caractères accentués?

Pour éviter ces problèmes, UTF-8 est l'encodage défini au niveau international qui permet de couvrir l'ensemble des caractères de tous les langages.

C'est également l'encodage recommandé dans le CGI.

Critère 4 : Types de données (valeurs numériques)

Certains types de données présentent un défi particulier car peuvent être présentées de façons différentes. Il est donc essentiel de standardiser les structures dont sont présentées certaines informations

Cas des valeurs numériques,

par exemple le nombre 1.5

- Dans les pays anglosaxons: "1.5"
- Dans les pays francophones: "1,5"

par exemple le nombre 2 500 000

- Dans les pays anglosaxons: "2,500,00"
- Dans les pays francophones: "2 500 000"

l'organisme de standardisation IEEE a défini une norme internationale (IEEE 754-201938) qui:

- impose le « . » comme séparateur de décimal
- interdit l'utilisation de séparateur de milliers

(par exemple « 1001.5 » respecte cette norme).

Critère 4 : Types de données (Dates)

Certains types de données présentent un défi particulier car peuvent être présentées de façons différentes. Il est donc essentiel de standardiser les structures dont sont présentées certaines informations

Cas des valeurs dates,

par exemple le 12 janvier 2005

- Dans les pays anglosaxons: "01/12/2005" ou "01-12-2005"
- Dans les pays francophones: "12/01/2005" ou "12-01-2005"

Plusieurs formats de dates longues existent

- Par exemple 12/05/2022 2:57pm , 2002-05-12 12:27:58 ou 2022-05-12T14:57:00Z
- Nécessité de tenir compte des fuseaux horaires

L'organisme de standardisation ISO a défini une norme (ISO 860139), norme également adoptée par l'IMANOR (NM ISO 860140) qui fixe un format de date universel

AAAA-MM-JJTHH:MM:SS(.sss)Z

exemple: 2022-05-12T14:57:00Z pour le 12 mai 2022 à 14:57:00 UTC).

Ce format est référencé dans le CGI.

Critère 4 : Types de données (n° téléphone)

Certains types de données présentent un défi particulier car peuvent être présentées de façons différentes. Il est donc essentiel de standardiser les structures dont sont présentées certaines informations

Cas des valeurs numéros de téléphone,

Groupages différents selon les pays

- Au Maroc: 05 37 11 11 11

- Aux Etats Unis: 555-333-1234

Indicatifs internationaux

- +212 661 111 123 ou +212 (6) 61 111 123 ou 00212661111123, etc...

L'Union Internationale des Télécommunications (UIT) a adopté un standard (ITU E.16441) qui impose une représentation unique des numéros de téléphone avec les caractéristiques suivantes

- Le numéro commence par le code international du pays sans le signe +
- Puis le numéro complet sans groupage et sans séparateur directement après le code pays et sans les chiffres optionnels locaux

Les exemples précédents s'écriraient donc : 212661111123

Critère 4 : Types de données (Coordonnées géographiques)

Certains types de données présentent un défi particulier car peuvent être présentées de façons différentes. Il est donc essentiel de standardiser les structures dont sont présentées certaines informations

Cas des valeurs coordonnées géographiques,

Il existe 2 façons de transcrire des coordonnées

- Format décimal : 34.0209° N. -6.8416° W
- Format degrés, minutes, secondes (DMS): 34° 1′ 15" N, 6° 50′ 30" W

Il existe plusieurs systèmes géodisiques

- WGS 84, NAD 83, PZ-90, GCI-02, BD-09

Données atomiques: il est recommandé de fournir ce type de données séparées sous plusieurs colonnes

Le plus utilisé est WGS 84:

Standard global : Utilisé pour les systèmes de navigation par satellite, notamment **GPS**.

Universalité : Compatible avec la majorité des cartes et systèmes de localisation modernes.

Précision: Offre une représentation précise de la forme de la Terre (ellipsoïde) et des coordonnées géographiques.

Adoption internationale: Reconnu comme référence par de nombreuses organisations, y compris l'ONU, l'aviation civile (OACI), et les services maritimes.

Récapitulatif des critères techniques

Dimension	Critère	Standard recommandé						
	Données tabulaires	CSV - RFC 4180						
	Image bitmap	PNG(*), JPEG (*), TIFF (*)						
Format de	Image vectorielle	SVG (*)						
fichiers	Texte	TXT(*), RTF (*), HTML(*)						
liciliers	Données géospatiales	Geojson, geotiff ou shapefile						
	Données structurées/hiérarchiques	XML(*), JSON (*), EPUB						
Encodage	Encodage des fichiers	UTF-8 (*)						
	Valeurs numériques	IEEE 754-2019						
	Date	NM ISO 8601 (*)						
	Numéro de téléphone	ITU E.164						
Type de	Coordonnées géographiques	Système géodésiques WGS 84 (GPS)						
données	Données textuelles	Utilisation de référentiel						
	Données atomiques	Les données ayant plusieurs composantes comme les données géographiques sont séparées (une colonne par composante)						
	Valeur manquante	Cellule/champs vide						
Unités	Unité de mesure	Système international de données - ISO 80000-1						

Transformer la donnée pour la rendre homogène

Il est nécessaire de garder en tête que ces données sont destinées à être lues par des machines, et non pas à être ergonomiques pour un humain. Il faut transformer/formater les données selon des standards définis

Normaliser

Les espaces, les majuscules, les accents, la ponctuation

Valeurs numériques

Appliquer la norme IEE 754-2019 Décimales avec le '.'. pas de séparateurs de milliers

Dates

Harmoniser les structures de date Utiliser la norme 8601 Préciser le fuseau horaire Préférer le fuseau UTC

Numéros de téléphone

Appliquer la norme ITU E.164 Ex. 212661123123

Coordonnées géographiques

Système géodésiques WGS 84 (GPS) Séparer les valeurs en colonnes

Données textuelles

Privilégier l'utilisation de référentiels (ex. registre de commerce, codes postaux, ..)

Données atomiques

Séparer les données composées de sous données (ex. GPS) en plusieurs colonnes

Valeurs manquantes

Tenter de récupérer la donnée Sinon laisser vide

Rendre lisible par machine

Il est nécessaire de garder en tête que ces données sont destinées à être lues par des machines, et non pas à être ergonomiques pour un humain

_	Table 4. Gender Developme					50	G3.		SDG A3														
		Condu Don	elopment Index	Name Barre	poment Index (HDI)	Life expect	and the same	Expected				1	C-	0	E	-	6		-	1	- 16	1	M
		Gender Dev	sipprism mass	riurean Deve	obeisur moex (kipi)	The expect	ancy at certi	Expected	leans on so	criodii	100 Horis (2057)	Councy	MINN	1000	100 E	5 mm	101A	T ners	2 100	THE LINE	1000	11mm	D mm
				(422.00)		(years)		100000		168	Afghanistan												
					Value:		BPE)		(jears)	_	68	Albania	0.645	0.626	0.610	6.613	0.619	0.632	0.641	0.641	0.652	0.662	3.669
											85	Algeria	0.577	0.580	0.387	6.591	0.595	0.609	5.606	0.617	9.627	0.636	0.644
tani	Country	Value	Street	 Female 	Male	Female	Male	Ferrale		Male	AS .	Andorra											0.759
	Country	7017	2017	2857	2017	2013	2517	2017		2017	347	Angola										0.224	0.367
	VERY HIGH HUMAN DEVELO		2317	58.71	2017	3013	2517	2017		20111	70.	Antique and Bertruta											
	National	0,991		196	9,853	14.2	80.5	18.6		17.2	40	Argontina	0.704	0.713	0.720	0.725	0.728	0.231	0.718	0.746	0.753	0,764	0.771
2	Owteniesd	0.567	3	0.937	0.948	10.3	81.5	95.0		16.3	88	Antie/ra	0.651	0.628	0.590	6,588	0.599	0.605	0.652	0.623	0.634	0.642	0.647
1	Australia	0.075	- 2	0.926	0.950	85.0	81.2	23.3		22.5	2.3	Justralia	0.866	0.867	0.366	0.672	0.875	0.881	5.886	0.000	8.893	0.895	0.896
4	Reland	21.979	4	0.926	0.946	83.6	19.7	19.7	4	19.5	20	Austria	0.750	0.000	0.005	0.007	0.813	0.917	0.620	0.024	0.035	6,534	0.636
5	Germany	0.967	2	0.919	0,951	83.0	79.9	10.9		17,0	1 00	Azertsapan						0.623	BALL	0.617	0.828	6.633	0.640
ii.	lociand	0,966	2	0.900	0,952	84.4	81,5	20.5		18.2	54	pah amag											0.776
	Hong Kong, China (SAR)	0,965	2	0.916	0,949	87.1	81.2	16,3	- 4		1 43	Bahrain	0.746	0.752	0.757	0.765	0.769	0.775	0.778	0.779	0.789	0,786	0.790
7	Sweden	0,960	1	0.007	0,834	64.3	80.8	1874	-0	30,9	136	Bongladeth	0.367	0.794	(0.412	0.409	0.417	0.425	0.413	0.447	6.455	0.460	0.4%
9.	Singapare	0,962	1 1	0.922	0,938	86,2	81.1	15.4	-0	10.0	5 58	Bertrados	0.716	0.713	0.718	0.721	0.727	0.791	8,735	0.780	0.734	0.762	0.750
10	Britherlands	0,966 0,960	2	0.913	0,544	83.7	80,5	16,3	-0	17,8	21	Belanu.						0.857	Desi	0.667	0.073	0.676	0.603
n_	Denmark	0,986	1	0.919	0,938	82.8 84.4	79.0	19.8	- 0	18,4	37	Delgrum	0.800	0.830	0.825	6,839	0.845	03892	0.857	0.002	0.000	0.888	0.073
12	Caracta United States	0,980	1	0.916	0.950	81.6	80.7 77.3	95.9 17.2		15.7	1 206	86120	0.644	0.651	0.657	0.661	0.601	0.662	9,662	0.864	1.000	0.670	0.677
14	Urded Keptern	0.900	1	0.903	0.541	83.4	79.9	17.9		17.0	140	Scrin	0.348	0.354	0.356	6,365	0.368	0.373	6,377	0.381	0.383	0.393	0.198
15	Finland	1,000	4	0.917	0,917	84.3	78.7	18.4	- 1	30.9	1 234	Brutan	0.040	2000		- Course	4,544	00274		00000	1000		90000
96	New Zeakand	0.900	- 2	0.900	0,932	83.7	80.4	19.7	4	18.0	118	Solivia (Plurinational State of	0.556	0.543	5,330	0.357	0.564	0.571	5,570	0.580	0.591	0.600	8,600
OT.	Rekism	0.971	- 2	0.901	0,858	83.6	78.6	208		18.8	77	Droma and Harragovina	,	0.043	water.	- Carrier	0.201	- Marrie		0.260	· ·	6.600	3.673
T.	Linchpersyleny		- 10		77.00			13.4		16, 1	1 101	Botowene	0.581	0.593	0.587	0.586	0.875	6577	9371	0.570	8.567	0.566	0.565
18	Japan	0.875		77,998.0	0.917	67,1 84,1	80.7	15.2		35,5	1 79	Prant	0.611	0.615	0.622	0.630	0.640	0.618	0.656	0.664	0.670	0.676	0.680
20	Austra	0.971	- 2	0.893	0.920	84.1	79.4	10.4		10,8	130	Prunei Denumeiam	0.760	0.797	0.792	0,797	9.801	0.005	5,307	0.000	0.013	6,836	0.019
21	Lasembaurg	0,968	2	0.886	0,916	84.1	79.6	14.1		13.5	7 38	Bulgaria	D.694	0.691	0.003	0,650	0.691	0.094	0.702	0.704	0.709	0.708	0.712
2	tireal Kress (Republic of)	0,975	- 3	0,990	0,913	84.1 84.3 86.1	79.2	14,1 16,6 15,9		13.5 15.3 17.1 18.0	110	Burkina Faso	11.000	0.000	20,000	16,600	O-BPE	, Giore	0.700	0.700	0.799	20,700	0.725
M.	Force	0.997	7	0.994	0.906	15.6	70.1	100		16.0	1 185	Burandi	0.297	0.300	0.297	0.299	0.298	0.296	0.254	0.296	0.300	0.300	8.303
t.	Timere	1 000	4	2.000	0.836	87.5	70.5	10.0		10.5	1 125	Cabo Verde	0.207	0.300	10.491	6.735	10, 5790	0.200	10,234	11,100	6.200	30.200	0.370
								\sim			1 146	Comitodia	0.364	0.363	0.373	6,377	0.360	6.387	0.391	0.397	0.402	6.407	0.420
									-		131	Cemerace	0.440	6.639	0.412	0.428	0.623	0.997	10422	0.423	0.421	0.426	0.420
										1					0.000	6,854	0.833	0.801		0.002	0.001	0.004	0.607
								The same of		7	12	Carrada	0,849	6,653					0,063				
										100		Central African Rejubble	0.587	0.332	9,785	6.25%	0.301	0.303	9.300	0.302	5.304	0.306	0.309
									-		136	Chail	-		1		100	-	-		1	-	0.299
									1	The second second	546	Chille	0.701	0.711	0.715	0.711	0.718	0.727	0.794	0.741	0.747	0.753	0.759

Expense T Expense & Supplier Transactic Amount Departme Departme ######### CASH FUN FINANCE I NOTTINGI HAFS 796: 45000000 Departme Departme ######### CASH FUN FINANCE (NOTTINGEHAFS-795) 85000000 Departme Departme ######### CASH FUN FINANCE (OLDHAM I HAFS-796) 280000000 Departme Departme ######### CASH FUN FINANCE (OXFORDS)HAFS 7971 75000000 Departme Departme ######## CASH FUN FINANCE / PETERBOR HAFS-797: 22000000 Departme Departme ######## CASH FUN FINANCE | PLYMOUTI HAFS 797, 35000000 Departme Departme ######## CASH FUN FINANCE / PORTSMO HAFS-797: 27000000 Departme Departme ######### CASH FUN FINANCE | REDBRIDG HAFS-797/ 31600000 Departme Departme ######### CASH FUN FINANCE (REDCAR A HAFS-797: 18000000 Departme Departme ######## CASH FUN FINANCE (RICHMON HAFS-797) 21000000 Departme Departme ######## CASH FUN FINANCE | ROTHERH/ HAFS 797: 29500000 Departme Departme ######## CASH FUN FINANCE (SALFORD | HAFS-797) 31000000 Departme Departme ######### CASH FUN FINANCE ISANDWEL HAFS-797: 43000000 Departme Departme ######### CASH FUNFINANCE (SEFTON PHAFS-798) 38000000 Departme Departme ######### CASH FUN FINANCE (SHEFFIELD HAFS-798: 70500000 Departme Departme ######## CASH FUN FINANCE (SHROPSHIHAFS-798: 32400000 Departme Departme ######## CASH FUN FINANCE (SOLIHULL HAFS-798) 26200000 Departme Departme ######### CASH FUNFINANCE (SOMERSE HAFS-798/ 65000000) Departme Departme Departme HHAFHHHHH CASH FUN FINANCE (SOUTH BIFHAFS-798) 49500000

- Pas de cellules fusionnées
- Un seul en tête

- Données longues plutôt que larges
- Plus propice pour archivage et manipulations BDD

Anonymiser les données

Les données permettant d'identifier une personne, directement ou indirectement doivent être anonymisées, en vertu de la loi 09-08

Choix de la méthode d'anonymisation

La bonne méthode d'anonymisation selon le contexte

Selon le type de data, le niveau de réidentification, et l'usage cible prévu, il est possible d'appliquer la bonne méthode:

Type de données

Les types de données définissent la sensibilité et le besoin de protection :

Si ce sont par exemple des données permettant directement l'identification (Nom/Prénom, Adresse, Numéro de téléphone, ...)

Techniques associées :

- Suppression: Retirer les informations directement identifiables (ex.: noms dans un fichier médical).
- Pseudonymisation: Remplacer les identifiants directs par des codes (ex.: un numéro aléatoire au lieu d'un nom).
- Généralisation : Réduire la granularité des données (ex. : transformer une date de naissance en année de naissance).

Niveau de risque de réidentification

Le risque de réidentification dépend de la sensibilité des données et des techniques de croisement:

Si par exemple on a un risque de réidentification à partir des éléments croisés (ex. profession + localisation permettent une identification).

Techniques associées :

- K-anonymité: Assure qu'au moins K individus partagent les mêmes attributs pour éviter la réidentification (ex.: au moins 10 personnes avec la même combinaison de sexe et âge).
- Perturbation : Ajouter du bruit statistique (ex. : altérer légèrement les valeurs numériques pour masquer les données exactes).

Usage prévu des données

L'usage final des données détermine la précision nécessaire et les contraintes éthiques :

Si par exemple l'usage prévu est à des fins statistiques:

Techniques associées :

 Agrégation : Transformer des données individuelles en statistiques globales (ex. : taux moyen d'une maladie par région).

Choix de méthode d'anonymisation: Exemples

Infrastructures techniques

<u>Contenu</u>: Nom des équipements techniques installés (antennes, transformateurs, ..)

Technique

d'anonymisation:PerturbationdescoordonnéesGPS(précision réduite au quartier).au

Données de santé par région

<u>Contenu</u> : Nombre de patients par maladie et région.

Technique

<u>d'anonymisation</u> : Agrégation par région et tranche d'âge.

Données économiques

<u>Contenu</u>: Revenus moyens par profession.

Technique

<u>d'anonymisation</u> : Kanonymité pour éviter la réidentification.